

IT Solutions to Facilitate Micro Launcher Developments

Andreas Wiegand Astos Solutions GmbH 6th Industrial Days on "Micro Launchers" 12. April 2018, DLR Lampoldshausen

IT Solutions - Overview

1. Design

- Trajectory Optimization
- Launch vehicle design optimization
- Guidance, navigation and control
- Flexible dynamics simulation
- On-board software*

- 3. Ground Segment
 - Logistics*
 - Launch safety and risk analysis
 - Flight operations*
 - Post flight analysis*
- 4. Challenges

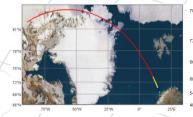
Solutions

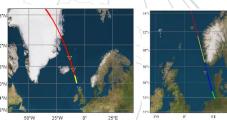
2. MAIT

- Verification and validation facilities
 for avionics/GNC
- Digital processes supporting MAIT
- Logistics*

© 2018 Astos Solutions

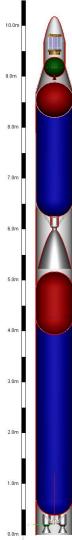
5.


* not addressed


First Guess & Performance

Performance - any Phase

- Different levels of maturity
- Aspects impacting performance
 - Load constraints (maxQ, g-load, ...)
 - Stage impact points
 - Dog-leg manoeuvres (goundtrack, inclination)
 - Station visibility
 - Plume disturbance of ground link



Design - Phase 0/A

- Stage sizing: point mass, thrust
- Selection of launch site(s)
- Rarely known impact of subsystems
- Trade-off and selection of concepts
 - Launch type (vertical, rail, horiz., air)
 - Reusability aspects
 - Propellant
 - Selection: Top-Down Cost
 - Cryogenic vs storable?
 - Solid vs hybrid vs liquid?
 - Rarely TRL9 data available for micro-LV
 - high uncertainties!

© 2018 Astos Solutions

Preliminary Design

Mass

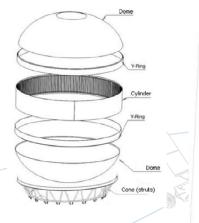
No typical

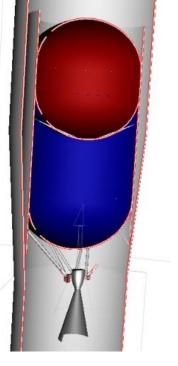
MBSE

Perfor-

mance

- Improved mass estimation
 - Break-up of stage definition to improve sensitivity
 - Stage and tank configurations (separated, common bkh, suspended, under fairing, ...)


Trajectory

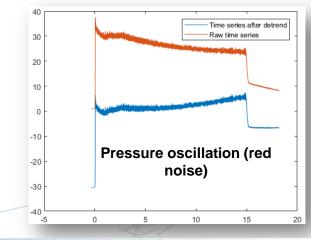

- Tanks, skirts, insulation, avionics, propulsion, ...
- Mass estimation regression, ...
- Propulsion system
 - Performance, losses, weight, size, PMS
- Geometry
 - Number of engines in one stage
- Controllability
 - TVC, RCS, location, propellant mass
- Bottom-up cost estimation based on preliminary product tree

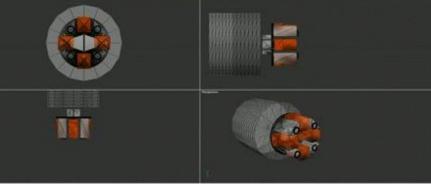
Detailed Design

Astos

- LV design sensitivity depends mainly on mass estimation
- Detailed structural mass estimation
 - Tank and stage configurations
 - Substructures
 - cylinder, bulkhead, y-ring, cone, struts
 - Material (metal, CFRP)
 - Stiffening concept
 - isotropic, orthogrid, isotropic sandwich
 - Dimensioning load case based on beam approximation
- Distributed aerodynamic forces
 - beam approximation & flexible body dynamics

Iterations with Subsystems

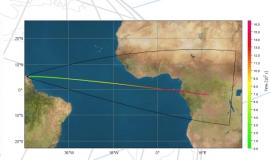

Propulsion System

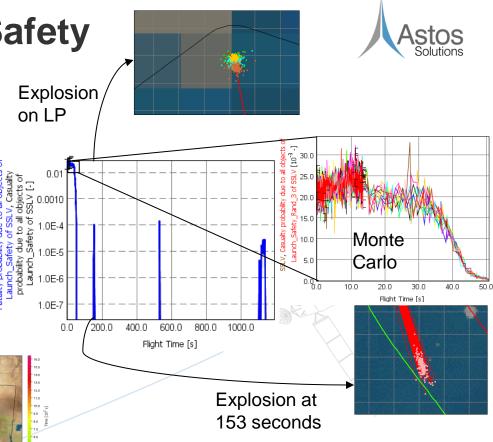

- · Combined engine cycle analysis in case of
 - throttleable engines, e.g. hybrid motors
 - critical coupling with system and subsystem
- Aerothermodynamics, acoustics, …
- Mechanical and Structural Analysis
 - Multi-Payload separation with separation devices
 - Sloshing (2D spring-damper model)
 - High frequency input from
 - Separation shocks
 - Pressure oscillations

© 2018 Astos Solutions

GNC and Verification Facilities

- Export of information for controller design
 - Linearized dynamics using mode shapes from flexible dynamics
- Development of GNC algorithms in Matlab/Simulink
- Selection of navigation sensors and actuators
- Verification and validation tests
 - MIL/PIL/HIL simulation
 - error injection
 - FES, SVF, FVT, AIV, ATB
 - SCOE: emulation and stimulation of EM/FM avionics equipment




© 2018 Astos Solutions

Operations – Launch Safety

- Explosion
 - Risk of casualty and fatality in case of failure
 - Blast wave on launch pad
 - Envelope of the destruction area caused by the shockwave generated by an explosion
- Flight corridor

Challenges and Solutions 1/2

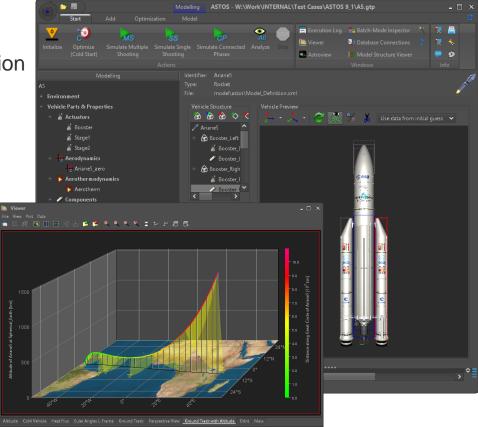
Low confidence at time of concept selection

- Time pressure and low budget in Phase 0/A
- Missing consideration of maybe critical subsystem information
- Weak cost estimation

- Representative subsystem models to estimate system impact and to achieve earlier confidence
- Reconfigurable tool chain
 - maintaining level of maturity through life cycle
 - covering critical design decisions in earlier phases
- Cost modelling considering more level of details and uncertainties

Challenges and Solutions 2/2

Increasing cost pressure


- Commercial market of micro and nano satellites
- NewSpace market with lower budget
- Competition

- Increased use of digitalization
 - Digital twin & Virtual testing
 - Digital processes in AIT
 - Requirements, ICD, PA docs as machine readable and interpretable information
- Cost reduction
 - More SW than HW tests
 - Higher efficiency, faster results, less person hours

Solution: ASTOS Tool Chain

Functionality

- Trajectory and detailed LV design optimization
- Launch range safety
- ODIN interface (structure, MT Aerospace)
- RPA and ESPSS interface (propulsion)
- Simulink interface for GNC
- Multi-body flexible-body dynamics for separation and high frequency analysis
- Real-time test with dSPACE SCALEXIO up to AOCS-SCOE, ATB
- Visualization

Actor

Solution: ASTOS Tool Chain

